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The Bio-Aerosol Mass Spectrometry (BAMS) instrument 
analyzes single aerosol particles using a dual-polarity time-of-
flight mass spectrometer recording simultaneously spectra of 
thirty to a hundred thousand points on each polarity. We 
describe here a real-time pattern recognition algorithm 
developed at Lawrence Livermore National Laboratory that has 
been implemented on a nine Digital Signal Processor (DSP) 
system from Signatec Incorporated. The algorithm first pre-
processes independently the raw time-of-flight data through an 
adaptive baseline removal routine. The next step consists of a 
polarity dependent calibration to a mass-to-charge 
representation, reducing the data to about five hundred to a 
thousand channels per polarity. The last step is the identification 
step using a pattern recognition algorithm based on a library of 
known particle signatures including threat agents and 
background particles. The identification step includes integrating 
the two polarities for a final identification determination using a 
score-based rule tree. This algorithm, operating on multiple 
channels per-polarity and multiple polarities, is well suited for 
parallel real-time processing. It has been implemented on the 
PMP8A from Signatec Incorporated, which is a computer based 
board that can interface directly to the two one-Giga-Sample 
digitizers (PDA1000 from Signatec Incorporated) used to record 
the two polarities of time-of-flight data. By using optimized data 
separation, pipelining, and parallel processing across the nine 
DSPs it is possible to achieve a processing speed of up to a 
thousand particles per seconds, while maintaining the recognition 
rate observed on a non-real time implementation. This embedded 
system has allowed the BAMS technology to improve its 
throughput and therefore its sensitivity while maintaining a large 
dynamic range (number of channels and two polarities) thus 
maintaining the systems specificity for bio-detection. 

 
I. INTRODUCTION 

 
Biological warfare agents that can be released as aerosols 

are of major concern because they can be disseminated easily 
and quickly over wide areas in lethal doses [1].  The detection 
and identification of airborne biological particles in real-time 
is a capability required for an effective response to terrorist 
threats as well as for early medical diagnosis.  The Bio-
Aerosol Mass Spectrometry (BAMS) system as described in 
Fig. 1, makes use of a high efficiency inlet used to sample 
aerosol particles, a tracking and sizing region that predicts the 
location and speed of the particles inside the system, a 2-band 
fluorescence pre-selection stage and a final dual polarity 
(negative and positive) mass-spectrometer for single particle 
chemical analysis.  The dual-mass spectrum recorded for each 
individual particle can be used as a signature. However, the 

data obtained from the system is simply the time-of flight 
arrival of various ions generated from the current particle 
analyzed and needs to be quickly processed in order to be 
associated with a given organism or toxin. The time-of flight 
is being recorded by one 500MHz digitizer (Model PDA1000 
from Signatec Incorporated) per polarity for 16us to 32us, 
yielding a total of 16,000 to 32,000 samples per particle 
analyzed. In order to increase the sensitivity level of the 
BAMS instrument, we needed to increase the number of 
particles per second that could be processed while maintaining 
the specificity of the existing recognition algorithm [2]. 

 

 
Fig. 1. Cross-sectional cartoon of the current BAMS system 

 
We describe in this paper the implementation of the real-

time algorithm processing the dual-mass spectrometer data 
using a combination of 9 Digital Signal Processors (DSP) 
(Model PMP8A from Signatec Incorporated).  We will first 
describe the various steps involved in the identification and 
then focus on the parallel implementation of the algorithm. 

 
II. ALGORITHM DESCRIPTION 

 
The processing algorithm can be broken into three major 

steps.  The first step is a conditioning step used to remove any 
baseline offset caused by detector variations and digitizer 
settings.  The baseline is estimated as the median value of the 
raw data on a given time-of-flight interval.  In order to 
accommodate time varying baseline fluctuations, the mass 
vector is split into 3 chunks for each polarity and the baseline 
is estimated and removed on the corresponding time-period. 
The second step consists of pre-processing the conditioned 
time-of-flight data into a calibrated mass-to-charge spectrum 
representing the chemical composition of the particle being 



analyzed. Using a calibration compound, it is possible to 
associate every time period of the time-of-flight data with an 
equivalent mass-to-charge ratio value. As the digitization 
speed is quite large, more than one time-of-flight sample point 
will contribute to a single mass-to-charge bin. 

 
Fig. 2. Mass Spectrum time-of-flight pre-processing 

 
The algorithm simply sums all the time-of-flight sample points 
corresponding to a unique mass-to-charge ratio value, thus 
creating what is called a mass vector. A mass vector typically 
has 500 to a 1000 mass-to-charge peaks per polarity. While 
the baseline is estimated first, it is actually removed after the 
calibration is performed, in order to reduce the computational 
complexity by minimizing the number of subtractions required 
(see Fig. 2). 

After the two-step pre-processing, the data has been reduced 
to two  500 to 1000-dimensional vectors, one for each polarity 
of the mass spectrometer. The next and third step in the 
algorithm consists of associating an organism or toxin 
signature to the data. It has been demonstrated that individual 
particle signatures from time-of-flight mass spectrometry can 
be clustered [3] using modified  Adaptive Resonance Theory 
techniques (ART) [4]. Using known agents, a library of 
typical patterns derived from the clustering is developed 
offline for each polarity. 

 
Fig. 3. Classification against a library using multi-dimensional angles 

 
 The classification step consists then of finding which 

pattern in the library is the closest to the multi-dimensional 
vector being analyzed. This step is performed by estimating 
the multi-dimensional angle between the vector being 

analyzed and the vectors in the library. This angle can be 
easily derived by computing the dot product between the two 
multi-dimensional vectors, which gives a value of the cosine 
of this exact angle once normalized by the Euclidian norm of 
each vector. A cosine value close to 1 indicates a small angle 
and therefore a very good match (See Fig. 3). The threshold 
for a possible match is set at a cosine value of 0.7 or above. 
The possible matches are then sorted according to their cosine 
value for each polarity. The final step of the classification 
consists of combining the two polarity results. This is done by 
implementing a simple score based rule tree summarized as 
follows: 

1. Take the highest match from the sorted list from 
the negative polarity. 

2. Starting with the highest match score from the 
sorted list from the positive polarity, check if the 
match equal to the current positive index. 

a. If YES, return the match as the final 
answer 

b. If NO, go to step 2, using the next highest 
match score from the sorted list from the 
positive polarity. 

3. If No match has been found, go to step 2 using the 
next highest negative match score from the 
negative polarity. If the list has been exhausted, 
then the final answer is set to unknown. 

 
Because the DSP implementation is limited by memory space 
the algorithm uses the rules on only the first three best 
matches of each polarity. 

 
III. FIXED-POINT COMPUTATION 

 
The DSPs used in the implementation of the algorithm have 

fixed point arithmetic and have limitations in terms of 
computations. Multiplications operate on two 16 bits (or less) 
numbers and produce a 32 bit number while additions operate 
on two 32 bits numbers and produce a 32-bit number. An 
overflow check bit is available in case the result would be 
more than 32-bits wide. In order to accommodate for fixed 
point operations, several precision measures have been taken 
in order to ensure appropriate results. 

Each time-of-flight data point is represented with 8 bits 
coming from the digitizer. The various calibrations obtained 
for conversion to mass-to-charge ratio tend to show that a 
single mass-to-charge bin will not exceed more than 512 time-
of-flight sample points. This yields values for the mass-to-
charge ratios that can be represented with 17 bits. In order to 
compute the final vector Euclidian norm we then have to 
truncate those values by 5 bits (equivalent to dividing by 32). 
This reduces the final precision but is requiring only 12 bits 
for each individual mass-to-charge ratio. The Euclidian norm 
for a 500 length mass vector would then require 33 bits and 
therefore could overflow. However, in practice no mass vector 
will have all its values set to the maximum height and if it did, 
the data would be considered corrupted, so the overflow 
process will serve to flag unrealistic signatures. 



The mass vector in the signature library is set so that each 
mass-to-charge ratio is represented with 8 bits and that the 
Euclidian norm is set to 256. This is only possible if no vector 
needs to have a single non-zero mass-to-charge value. In 
practice we have never encountered such a case. The dot 
product of a library mass vector with the current particle mass 
vector will yield a number that can use up to 29 bits. The dot 
product result can be shifted by 8 bit as the norm of the library 
vector is 256. We now have a 21 bit number representing the 
Euclidian norm of the current mass vector multiplied by the 
cosine of the multi-dimension angle between the two mass 
vectors. Because we do not have easy access to the square root 
function in a DSP, we will estimate the square of the cosine 
instead. As the square function is an increasing monotonous 
bijection we can then have equivalence if we use the 0.7 
threshold squared instead. We therefore square the dot product 
number shifted by 8 bits to the right. Even though, it seems 
that we could overflow (21bits squared could yield up to a 
42bits numbers), we know it cannot be greater than the norm 
of the current vector (33bits and only not corrupted if within 
32 bits) as the cosine is less than one. Dividing this number 
with the previously 32 bit norm value would only give a 0 or 1 
result as they are all represented in the same fixed point 
representation. In order to go around this issue, the norm is 
modified to loose 8 bits precision by being shifted right by 8 
bits before being divided to the squared normalized dot 
product. The result is then an approximation of the cosine 
squared with 8 bit precision where 256 would be one. The 
next step is then to compare the result to 0.7 squared or 0.49, 
which corresponds to a value of 125 in 8 bit fixed point 
representation. The sorting of the different matches can be 
done on the squared cosine values the same as it would be 
done with the simple cosine values. 

 
IV. PARALLEL IMPLEMENTATION 

 
In order to achieve maximum performance in terms of 

speed, the algorithm described has been implemented on a 
highly parallel platform containing 9 DSPs, each of them 
having eight arithmetic and logic units (TMS32C6201 from 
Texas Instrument). The PMP8A from Signatec Incorporated 
contains two independent groups of four processing DSPs and 
a ninth DSP acting as a master, responsible for initiating data 
transfer between the various interfaces and the processing 
DSPs. In addition, the board contains one large memory per 
group of four DSPs. 

The two polarity time-of-flight spectra are processed 
independently until the final step. In addition, the digitized 
data is generated in two different digitizers. In order to 
parallelize the pre-processing, each polarity time-of-flight data 
is therefore sent to each group of four processing DSPs as 
shown in Fig. 4. For each polarity, the adaptive baseline 
removal can be split into three independent processes that can 
be run in parallel. The data is therefore transferred by 
contiguous blocks into three of the processing DSPs in a 
group, where the two pre-processing steps occur. The mass 
vector pieces are then reassembled in the fourth DSP of the 

group for the final dot product matching step. In order to 
improve the overall speed of the pre-processing, it is possible 
to optimize the size of the various blocks sent to the first three 
DSPs of the group. The first DSP will obviously have more 
processing time than the second DSP itself having more 
processing time than the third, since the memory (RAM) can 
only be accessed by one DSP at a time. The following 
equation can be solved for optimum processing speed: 

 














+=

+=

=++

P
N

T
N

P
N

P
N

T
N

P
N

NNNN

T
P
N

N

N
N

332

221

321

3

2

1

second)per  (sample ratetransfer :
second)per  (sample rate processing  :

dataflight -of-in time samples ofnumber  :

DSP3on  ed transferrsamples ofnumber :

DSP2on  ed transferrsamples ofnumber :
DSP1on  ed transferrsamples ofnumber :

          (1) 
 

In this application, the transfer rate is two hundred times 
larger than the processing rate which makes the data length 
different from each other by about 100 samples. 
 

 
Fig. 4. Parallel processing data flow 

 
The final score based rule combining step is done in the 

fourth DSP of the first group. It receives the sorted data from 
the other polarity and performs the rule tree algorithm on the 
three best matches of each polarity. The result is then sent to 
the computer through a PCI interface. For diagnostics and 
further offline analysis, the data stored in the RAM blocks can 
also be exported through the PCI interface, but it obviously 
reduces the overall speed performances. 

 
The embedded processing has been successfully 

implemented on the PMP8A DSP board and run at 30 particles 
per seconds with better than 80 percent recognition rate for 
most agents, matching the offline equivalent recognition 
algorithm performance in specificity but exceeding the 
processing by a factor of 5. Theoretically the system could 



process up to 1000 particles per seconds but currently we do 
not have an ionization laser able to operate at this speed. 

 
IV. CONCLUSION 

 
We have demonstrated speed improvement in multi-

dimensional data processing for bio-security application using 
highly parallel implementation of an existing algorithm. 
Digital signal processors have allowed us to move the speed 
bottleneck caused by long processing time to instrumental 
limitations such as laser repetition rate. Furthermore as 
technology in those areas improves, we will be able to 
maintain higher signature analysis rates. We have also 
demonstrated the ability to use multi-channel signatures in 
order to reach high specificity levels in bio-detection in a real-
time and standalone system.  
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